Nowhere-zero Flows in Regular Matroids and Hadwiger’s Conjecture
نویسندگان
چکیده
We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2and 3-sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent to Hadwiger’s conjecture for graphs and Tuttes’s 4and 5-flow conjectures.
منابع مشابه
Nowhere zero 4-flow in regular matroids
Jensen and Toft [10] conjectured that every 2-edge-connected graph without a K5minor has a nowhere zero 4-flow. Walton and Welsh [24] proved that if a coloopless regular matroid M does not have a minor in {M(K3,3),M(K5)}, then M admits a nowhere zero 4-flow. In this note, we prove that if a coloopless regular matroid M does not have a minor in {M(K5),M(K5)}, then M admits a nowhere zero 4-flow....
متن کاملOn (k, d)-colorings and fractional nowhere-zero flows
The concepts of (k, d)-coloring and the star chromatic number, studied by Vince, by Bondy and Hell, and by Zhu are shown to reflect the cographic instance of a wider concept, that of fractional nowhere-zero flows in regular matroids. c © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 155–161, 1998
متن کاملCubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows
We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...
متن کاملNowhere-zero 3-flows in graphs admitting solvable arc-transitive groups of automorphisms
Tutte’s 3-flow conjecture asserts that every 4-edge-connected graph has a nowhere-zero 3-flow. In this note we prove that, if a regular graph of valency at least four admits a solvable group of automorphisms acting transitively on its vertex set and edge set, then it admits a nowhere-zero 3-flow.
متن کاملForbidden graphs and group connectivity
Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014